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We designed and implemented a novel omnidirectional spherical robot. Instead of using
wheels or flywheels, a driven ball is installed inside the spherical shell and driven by two
orthogonally-mounted rollers; thus, the omnidirectional mobility of the robot with no
singularity can be achieved by simple forward kinematic mapping. The dynamic model of the
robot is derived, and effect of the model's parameters is evaluated in simulation and discussed.
The simulation results also serve as the design guideline for building the empirical system.
Several design issues are addressed to ensure the robot's proper development. Finally, the
spherical robot is built, and its performance is quantitatively and experimentally evaluated,
thus proving its omnidirectional and trajectory-controllable mobility.

© 2013 Elsevier Ltd. All rights reserved.
Keywords:
Spherical robot
Omnidirectional
Locomotion
1. Introduction

A spherical robot is a special type of mobile robot that has recently received significant attention. The special morphology of
the robot has several advantages over a traditional wheeled or legged robot [1]: (i) the completely-covered outer shell protects
the whole system; (ii) the motion resembles wheeled locomotion with great power efficiency and motion smoothness; (iii) the
motion can be omnidirectional, owing to its intrinsic nature of geometrical symmetry; (iv) every portion of the outer shell can act
as a “foot,” which allows fast collision recovery and automatic contact adapting to soft/uneven terrains and other conditions.

Several spherical robots have been reported in the past two decades, and they can be divided into three categories according to
their driving mechanisms: direct-driving, gravity, and angular momentum methods. In the direct-driving method, with the
design of a specific mechanism, the motor torque can be directly transmitted to the outer shell as the driving force for the robot.
The concept was introduced in 1996 by Halme et al., where the robot had one active wheel mounted on the inside drive unit
(IDU) with two points anchored to the outer shell [2]. The wheel can be steered so the robot can generate planar motion. The
design was later revised by Zhan et al. in 2011; the weight of the robot was lightened and the number of anchors between the IDU
and the outer shell was raised to four, and three were passive sponge wheels to improve the friction needed for robot steering [3].
In 1997, Bicchi et al. introduced the robot “SPHERICLE,”where a small wheeled vehicle was placed within the outer shell [4]. Later
in 2003, Alves et al. proposed a robot with a similar driving mechanism. The robot had a four-wheeled car inside the shell, and
through the independent control of these wheels, the robot could move forward and turn aside [5]. In 2002, Michaud et al.
introduced the robot “Roball” with a novel driving system. The robot had two active wheels to form the IDU, and the contact
points of these two wheels to the outer shell could be actively altered by changing the orientation of a heavy mass hanging on the
IDU, thus achieving the driving and steering functions [6]. Many researchers were inspired by this “gimbal mechanism-like”
design, and this later became one of the mainstream design approaches for spherical robots. In 2004, Kabała et al. introduced
“RoBall,” the first spherical robot with an internal gimbal mechanism [7]. In 2006, Ming et al. reported a new configuration of a
robot, which revised the gimbal mechanism by having a circular track around the shell's inner surface for the IDU to slide on [8]. In
c. 4, ME Eng. Bldg. Room 503-3, Taipei 106, Taiwan. Tel.: +886 2 3366 9747; fax: +886 2 2363 1755.
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2008, a gimbal-based spherical robot “BYQ-III” was introduced by Liu et al. and a series of comprehensive studies on the control
and trajectory planning of this robot was reported as well [9–11]. Some other robots with similar mechanisms were also reported
by Ghanbari et al. [12], Yoon et al. [13], and others.

The second category is the gravity method. By manipulating the center of mass (COM) position of the robot, a torque can be
adequately created with respect to the ground contact point, thus driving the robot to roll. In 1999, Mukherjee et al. introduced a
novel configuration of a spherical robot “Spherobot,”which had four movable masses mounted on the four spokes extending from
its geometrical center to the shell. When the masses moved along with the spokes, which altered the COM of the whole robot, the
robot could be driven in a desired direction [14]. The concept was further analyzed by Javadi in 2002; the robot “Glory” could
radically distribute weights along with the spokes, which enabled the robot to accelerate, decelerate, and move at a constant
velocity [15,16].

The third category is the angular momentum method, which utilizes the characteristics of angular momentum conservation.
When a flywheel installed inside the spherical robot rotates, the outer shell rotates in the opposite direction to balance the
angular momentum. In 2000, Bhattacharya et al. reported a robot design in this category. It had two sets of orthogonally-mounted
motors attaching to the spherical shell, and the shell rotated in the opposite direction as the motor rotated. With their axes
parallel and perpendicular to the ground, these motors are for driving and steering, respectively [17]. Following that, a series of
studies on this type of robot was reported by Joshi et al. [18,19]. In 2009, Jia et al. reported a spherical robot with only one
orientation-changeable flywheel, achieving both driving and steering [20]. While driving and steering are two independent
degrees of freedom (DOFs), they may be generated by different methods. In 2008, Schroll introduced a “Gyrosphere robot,”which
combined the angular momentum (for driving) and gravity (for steering) methods [21].

Each method has its advantages and disadvantages, and the discussion here focuses on mobility. Considering the driving
characteristics, the direct-driving method directly transmits the motor torques to the robot's outer shells. Thus, comparable to the
gravity method, the propulsion force is controllable. In addition, that force can be extended to a larger scale that is feasible for fast
locomotion and obstacle negotiation. The angular momentum method can excite a great propulsion force. However, since the
momentum balance is in the velocity state, empirically, the motion is hard to control in displacement, thus posing a challenge in
robot trajectory planning. Considering the steering capability, one of the most important characteristics is the omnidirectional
mobility since it is a unique feature of the spherical robots, as described in the first paragraph. Omnidirectional mobility by
definition indicates that the robot can move in any direction at any instant, or equivalently, having controllable motion DOFs as
the coordinate system. The planar coordinate system in general has three DOFs: forward/backward motion, lateral motion, and
orientation. However, since the spherical robot is symmetric in orientation, the omnidirectional locomotion in spherical robots
means they can move freely in the forward/backward and lateral directions, reducing to two DOFs. Robots using the gravity
method can move omnidirectionally, but their trajectory planning is challenging since the motion is determined by the spatial
composition of the continuously-rotating active inputs, whose number is usually larger than two DOFs. Robots with one flywheel
(i.e., angular momentum method) are not able to perform omnidirectional locomotion since the direction of the angular
momentum changes gradually, resulting in a gradual change of their direction. In contrast, robots with two flywheels can perform
omnidirectional motion in most situations. However, because the flywheels are anchored to the outer shell at certain positions,
such robots have certain singular configurations, which limit their movement to a certain direction. The similar situation of
singularity occurs in robots with the gimbal-mechanism-based direct-driving method. Robots with the friction-based
direct-driving method do not have a singularity problem. However, the developed robots which utilize wheels have
nonholonomic constraints, so they cannot perform instant sharp turns (i.e., not omnidirectional). The characteristics of the
robots with different configurations are summarized in Fig. 1. The index “sharp turn” indicates that the robot is capable of
performing sharp turn motions “at any position.” For example, a robot with a single wheel can perform a sharp turn by changing
the wheel's orientation. However, this change requires a certain amount of time, so the locomotion does not qualify as
Fig. 1. Characteristics of the developed spherical robots. D, G, and A indicate direct-driving, gravity, and angular momentum methods, respectively. The mark “v”
indicates the robot is capable of performing the specific motion, and the mark “v*” indicates the motion is achievable in most situations (i.e., with singularity).
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omnidirectional. In other words, the omnidirectional motion can be regarded as the capability of performing sharp turn motions
“at any instant.”

Here, with the desire to develop a spherical robot capable of omnidirectional locomotion and trajectory control, yet with a
minimum number of actuators, we report on a novel design of a spherical robot OmniQiu. The robot utilizes the direct-driving
method. However, instead of wheels or the gimbal-mechanism adopted by other robots in this category, a smaller ball is installed
inside the shell and can be driven to roll on the shell by two independent and orthogonally-mounted actuators, thus achieving
2-DOF singularity-free planar omnidirectional locomotion of the spherical robot. To the best of our knowledge, this unique
configuration of the spherical robot has never been reported. The relation from actuators to the robot locomotion is 2 to 2
mapping with simple functions, thus achieving the requirement of using minimum actuators and requiring low control effort.

The paper is organized as follows. The design concept of the spherical robot OmniQiu is introduced in Section 2, and the
derivation of its dynamic model based on Lagrangian mechanics is described in Section 3. The design realization is presented in
Section 4, and the performance evaluation is reported in Section 5. Section 6 concludes the work.

2. Design concept

Design of the spherical robot is set to meet the following specifications: (i) The robot uses the direct-driving method, which
utilizes the motor power to directly drive the spherical robot via the transmission system. (ii) It is capable of performing
omnidirectional locomotion. As mentioned in the Introduction, omnidirectional locomotion by definition indicates that the robot
can move in “any” direction at every instant. For a spherical robot, the mobility in 2-DOF planar translational motion
(i.e., forward/backward and sideways) is required. (iii) It uses minimum number of actuators to achieve desired motion. Since the
omnidirectional motion of the spherical robot is 2 DOF, two motors are utilized.

Design of the spherical robot with singularity-free omnidirectional locomotion using the direct-driving method requires the
mechanism inside the robot to have non-fixed contact points to the outer shell to execute continuous rolling motion of the shell.
Thus, the most widely-used method to satisfy this is to install one or multiwheels inside the spherical shell. However, the fixed
standard wheel ideally prevents the motion orthogonal to the rolling direction [22], thus impeding omnidirectional locomotion.
We focused our attention on the mechanism design of the traditional ball mouse, which has a freely-rolling track ball and two
orthogonally-oriented rotating rollers next to the ball. As the track ball rotates, its rolling motion can be decomposed into two
directions, each driving one roller only, so the planar motion of the ball can be correctly measured. Inspired by this unique
arrangement, we design the spherical robot OmniQiu by the mechanism “inversed” to that in the ball mouse—by actively and
independently driving two rollers, the motion of the track ball can be composed to successfully roll in any direction on the plane.
Following that, by putting the track ball and the whole driving system inside the spherical shell, the spherical robot can be
conceptually constructed. The planar rolling of the track ball drives the spherical shell moving freely on the 2D plane; thus the
omnidirectional motion of the spherical robot is achieved.

Fig. 2 sketches the driving mechanism of the proposed spherical robot from the front view (A) and the top view (B). As shown
in Fig. 2(A), when the y-axis roller rotates in the clockwise direction (i.e., viewed from+y direction) with speed _θr , the track ball
can be driven to roll in the counterclockwise direction inside the spherical shell with speed _θd, which further drives the shell to
roll in the same counterclockwise direction on the ground with speed _θs. As a result, the spherical robot moves toward +x
direction. In the meantime, because the x-axis roller contacts the driven ball via a single point located in its great circle as shown
in Fig. 2(B), the rolling motion generated by the y-axis roller is not affected by this contact point. Thus, the planar motion of the
driven ball can be independently controlled and actuated by two rollers, which eases the motion planning and trajectory
generation. Since the function of the “track ball” is no longer tracking, that ball is hereafter referred to as the “driven ball.” To
maintain the relative configuration among the spherical shell, the driven ball, and the two rollers, a structure is constructed to
define the allowable relative motion among these parts. In addition, the structure is also utilized as the fixture to the required
mechatronic system. As a result, the structure and the mechatronics are all installed inside the outer shell in the remaining space,
as encircled in the dash-dotted curve shown in Fig. 2(A). These parts, including two rollers, are hereafter referred to as the “main
Fig. 2. Illustrative sketches of the spherical robot's driving system: (A) front view and (B) top view. The main body and the motors are not drawn in (B) for clear
presentation.
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body.” With adequate contact between the main body and the outer shell, the driving mechanism can be established and the
driven ball can be adequate driven by the two rollers. The combined system with the main body and the driven ball is hereafter
referred to as the “inner system.”

The empirical configuration of the inner system is constrained by its desired COM with respect to the spherical robot's
geometric center (i.e., also the COM of the outer shell). If the COM coincides with the geometric center, the inner system is in
neutral equilibrium, and the contact point between the driven ball and the outer shell may exist at any point. If the COM of the
inner system is located above the robot's geometric center, the system acts like an inverted pendulum, and the stable
configuration of the inner systemwill be an inverted version of the configuration shown in Fig. 2(A). In this condition, there is less
contact friction between the outer shell and the driven ball than the ordinary configuration since the gravity vector aims in the
opposite direction than the normal force. As a result, the COM of the inner system located below the spherical robot's geometric
center is desired.

The DOFs of the robot shown in Fig. 2 may be interpreted as having different numbers, depending on the subsystems to be
judged. Considering the robot's explicit behavior (i.e., the motion of the outer shell), it only has two translational and planar DOFs
since the rotational DOF does not alter its appearance. Considering the state of the main body presented at the outer shell's
geometric center, the robot has five DOFs, including the two translational DOFs described above and three rotational DOFs in
spatial space, where the last DOF, vertical displacement, does not change during locomotion. The designed control input has two
DOFs (i.e., rotation of the two rollers), which matches the DOFs of the robot's explicit behavior as planned. Because of Newton's
third law, when the torque applies to the roller to roll the driven ball, the reaction torque applies to the main body simultaneously
and makes it rotate. Thus, each control input indeed affects two DOFs of the main body—one translational DOF and one rotational
DOF. Two control inputs determine four out of five DOFs of the main body. The left yaw DOF of the main body (i.e., rotation about
the vertical axis) cannot be controlled by the roller inputs. However, generally, only the explicit behavior matters and this
rotation does not change the robot's explicit appearance. In addition, the explicit motion variation caused by the variation of this
DOF can be corrected with control effort by adjusting the relative motion of these two controlled inputs.
3. Robot dynamic model

The dynamic model of the spherical robot as it rolls along in a straight line (i.e., in +x direction) is developed in this section
according to the Lagrangian method. Because the driving mechanism of the robot for movement along x and y directions are
identical, as shown in Fig. 2, the simplified planar model in the xz-plane is developed and depicted in Fig. 3. Note that the planar
model is also suitable for not only the “driven ball” in spherical shape, but also for the ordinary wheels in the thin disk shape.
Thus, the model development can be utilized in a much wider class of devices as shown in Fig. 1.

The model is composed of three parts: the outer shell (in brown), the driven ball (in blue), and the main body (in green),
which matches the composition of the designed system described in Section 2. The three parts are assumed to be axis-symmetric,
so their COMs can be aligned to position in a straight line. In addition, all contacts are assumed to engage in pure rolling without
slipping. Thus, the rotational motion of the driven ball, θd, shown in Fig. 2(A) is directly related to that of the roller, θr, so modeling
of the roller does not attribute extra dynamic property and can be skipped. The torque generated from the motor and applied to
the roller can directly be regarded as applying to the driven ball by scaling the ratio of two radii. Because the motor rotates with
respect to its housing (i.e., the main body), θd is a relative angle with respect to the main body. In contrast, the rotational motion
of the outer shell, θs, is defined with respect to the ground. The swing motion of the main body represented by the rotational state
θb, is also defined with respect to the vertical z-axis. The complete nomenclature of the modeling work is listed in Table 1.
Fig. 3. Parameters of the robot dynamic model. Related definitions are listed in Table 1.
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Table 1
Nomenclature of the model and the corresponding robot specifications.

Outer shell
Radius rs 121.5 mm
Mass ms 360 g
Moment of inertia Js 3.3 × 106 g · mm2

COM position vector (xs, zs)
Orientation θs

Driven ball
Radius rd 60 mm
Mass md 100 g
Moment of inertia Jd 0.2 × 106 g · mm2

COM position vector (xd, zd)
Orientation θd

Main body
Mass mb 1140 g
Moment of inertia Jb 4.4 × 106 g · mm2

COM position vector (xb, zb)
Orientation θb

Driving mechanism
Roller radius rr 5 mm
Roller rotation θr

Distance between the COMs of the outer shell and of the main body d 10 mm
Coefficients A 6.4 × 106 g · mm2

B 1.2 × 107 g · mm2

C 16550 g · mm
D 3.0 × 107 g · mm2

Gear ratio np 64
nr 12

39W.-H. Chen et al. / Mechanism and Machine Theory 68 (2013) 35–48
The translational (K1) and rotational (K2) kinetic energy as well as the potential energy (U) of the whole system can be
expressed as:
respec
K1 ¼ 1
2 ms _x2s þ _z2s

� �
þ 1

2 mb _x2b þ _z2b
� �

þ 1
2md _x2d þ _z2d

� �
K2 ¼ 1

2 Js _θ
2
s þ 1

2 Jb _θ
2
b þ 1

2 Jd _θd þ _θb
� �2

U ¼ msgzs þmbgzb þmdgzd

:

8>><
>>: ð1Þ
Since non-slip rolling is assumed, the position vectors of the outer shell, the main body, and the driven ball can be further
written as:
xs; zsð Þ ¼ rsθs; rs
xb; zbð Þ ¼ rsθs−d sin θb; rs−d cos θbð Þ
xd; zdð Þ ¼ rsθs− rs−rdð Þ sin θb; rs− rs−rdð Þ cos θbð Þ

8<
: ð2Þ

tively, with a constraint equation that describes the relationships among θs, θb, and θd:

f θs; θb; θdð Þ ¼ rs θs−θbð Þ−rdθd ¼ 0: ð3Þ
The states θd and θb are chosen as the general coordinates, which are directly affected by the motor torque (i.e., action and
reaction torques). By importing Eq. (3) into Eqs. (1) and (2), the total kinetic energy K and the potential function U can be
derived:
K ¼ K1 þ K2 ¼ 1
2 ms þmd þmbð Þr2d þ

rd
rs

� �2
Js þ Jd

� �
_θ
2
d

þ1
2 ms þmd þmbð Þr2s þmbd

2 þmd rs−rdð Þ2−2 mbdþmd rs−rdð Þð Þrs cos θb þ Js þ Jb þ Jd
h i

_θ
2
b

− ms þmd þmbð Þrsrd− mbdþmd rs−rdð Þð Þrd cos θb þ
rd
rs
Js þ Jd

� �
_θs _θb

ð4Þ

U ¼ msgrs þmbg rs−d cos θbð Þ þmdg rs− rs−rdð Þ cos θbð Þ: ð5Þ
Importing energy terms in Eq. (4) into the Lagrangian equation,
τ ¼ d
dt

∂K
∂ _θ

−∂K
∂θ þ ∂U

∂θ ; ð6Þ
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τd ¼ ms þmb þmdð Þr2d þ
rd
rs

� �2
Js þ Jd

� �
€θd

þ ms þmb þmdð Þrsrd− mbdþmd rs−rdð Þð Þrd cosθb þ rd
rs
Js þ Jd

h i
€θb

þ mbdþmd rs−rdð Þ½ �rd _θ2b sin θb

ð7Þ

τb ¼ ms þmb þmdð Þrsrd− mbdþmd rs−rdð Þð Þrd cos θb þ
rd
rs
Js þ Jd

� �
€θd

þ
h
ms þmb þmdð Þr2s þmbd

2 þmd rs−rdð Þ2−2 mbdþmd rs−rdð Þð Þrs cos θb
þ Js þ Jb þ Jd�€θb þ mbdþmd rs−rdð Þ

h i
rs _θ

2

b
sin θb

þ mbdþmd rs−rdð Þ
h i

g sin θb:

ð8Þ
Note that τd and τb are torques acting on the driven ball and the main body, respectively, and they are generated by the motor
torque. As shown in Fig. 2(A), when the motor generates a torque τm, the main body where the motor is mounted feels a reaction
torque τb = −τm. The torque τm applied to the roller is further transmitted to the driven ball. Because these two parts have
different radii, the torque acting on the driven ball is magnified to τd = nrτm, where nr is the ratio of radius of the driven ball to
that of the roller. By rearranging Eqs. (7) and (8), €θd and €θb can be represented as:
€θd ¼ − 1
rm

Drd−Brm−C 2rs−rmð Þrd cos θb
A D−2Crs cos θbð Þ− B−Crd cos θbð Þ2 τm þ

B−Crd cos θbð Þg þ Brs−Drd þ Crsrd cos θbð Þ _θ2b
h i

C sin θb

A D−2Crs cos θbð Þ− B−Crd cos θbð Þ2
ð9Þ

€θb ¼ 1
rm

−Arm þ Brd−Cr2d cos θb
A D−2Crs cos θbð Þ− B−Crd cos θbð Þ2 τm−

Ag þ Ars−Brd þ Cr2d cos θb
� �

_θ
2
b

� �
C sin θb

A D−2Crs cos θbð Þ− B−Crd cos θbð Þ2 ð10Þ

can be derived by Eqs. (3), (9), and (10):

€θs ¼− 1
rsrm

Dr2d þ Arsrm−B rs þ rmð Þrd−C rs−rmð Þr2d cos θb
A D−2Crs cos θbð Þ− B−Crd cos θbð Þ2 τm− 1

rs

Ars−BrdþCr2d cosθb
� �

gþ Ar2s−2Brsrd þ Dr2d
� �

_θ
2
b

� �
C sin θb

A D−2Crs cos θbð Þ− B−Crd cos θbð Þ2
ð11Þ

¼ ms þmd þmbð Þr2d þ rd
rs

� �2
Js þ Jd

� �
, B ¼ ms þmd þmbð Þrsrd þ rd

rs
Js þ Jd

h i
, C = [md(rs − rd) + mbd], and D = [(ms +

mb + md)rs2 + mbd
2 + md(rs − rd)2 + Js + Jb + Jd] are mainly inertia parameters of various parts of the robot.
Eqs. (10) and (11) show that dynamic responses of the main body and outer shell, €θb and €θs€θs, are functions of θb, _θb, and the

motor torque, τm. These relationships can be symbolically represented as €θb ¼ f θb; _θb; τm
� �

and €θs ¼ f θb; _θb; τm
� �

. Thus, the

spherical robot's dynamic performance is mainly affected by the state of the main body and the torque. More specifically, the
coefficients in front of τm can be treated as the inverse of the equivalent inertia, so this term relates the robot's input torque and
output angular acceleration. The second term on the right side of Eqs. (10) and (11) can be treated as the equivalent gravity and
centrifugal effect resulting from the main body's dynamics, so this term alters the robot's effective torque and only exists when
the main body is tilted.

The behavior of the DC brushed motor with a planetary gearbox and with a constant voltage input, v, can be approximated by
an affine function:
τm ¼ ηnp
KTv
R

−KTKe

R
np

_θm
� �

; ð12Þ

KT, Ke, R, np, and η are the torque constant, the voltage constant, the terminal resistance, the gear ratio of the gearbox, and
where
the gearbox efficiency, respectively. By importing Eqs. (12) into (10) and (11), the overall dynamic relationship of the control
input to the robot output is established.



Fig. 4. Simulation results that show the effect of the input voltage on the system's dynamics: (A) rotation of the outer shell, θs; (B) orientation of the main body,
θb; and (C) speed of the driven ball, _θd . The input voltages are 4.5 V (dash-dotted blue), 9 V (dashed red), and 13.5 V (solid yellow).
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The effect of the input and parameters on the overall system's dynamics can be revealed through the numerical
simulation of the model described above. The variables for evaluation include the input voltage to the motor, the masses,
and the COM position of the main body. The system's dynamics are evaluated by the body state of the outer shell, the driven
ball, and the main body. Each variable is adjusted for three different values in simulation to check its effect on the system's
dynamics. The middle value is chosen according to the one used in the empirical system, which is listed in Table 1. The
larger and smaller values are chosen to be 50% more and 50% less, respectively. Fig. 4 plots the effect of the input voltage on
the system's dynamics. Fig. 4(A) reveals that the speed of the robot (i.e., explicit behavior, _θs) is faster with higher input
voltage, yet small oscillations of θs during motion are observed in all simulated input voltages. This phenomenon mainly
results from the oscillating behavior of the main body shown in Fig. 4(B). It shows that the oscillating frequency of θb
remains similar among different input voltages, but the amplitude of θb is roughly proportional to the input voltage. The
main body inside the outer shell can be treated as the pendulum system. When the geometry and mass are fixed to certain
values, the system has its own natural frequency. Thus, a change in the input voltage has less effect on the frequency of θb
but more on the amplitude since the torque generated by the input voltage and applied to the system on some level disturbs
the system's equilibrium. Larger torque yields larger perturbation. Fig. 4(C) shows that the driven ball reaches its
steady-state speed in a short amount of time, but it also has small oscillations due to the main body's swinging and the
system's dynamics. Because three body states, _θs, _θd, and _θb, are constrained by Eq. (3), the robot's explicit behavior, _θs,
includes oscillations. In brief, this simulation indicates that the voltage is important for the robot's forward speed, and the
behavior of θb is important for its detailed explicit behavior.

Fig. 5 plots the effect of the input voltage on the system's dynamics. Fig. 5(A-I, II, III) shows that variations in the mass do not
alter the explicit forward speed of the robot _θs much, regardless of whether the variations of mass involve the driven ball, the
outer shell, or the main body. In contrast, because of the “pendulum behavior” described in the previous paragraph, variations
indeed have a significant effect on the oscillating behavior of θb. As shown in Fig. 5(B-I, II), when the mass of the main body or the
driven ball increases, the oscillating frequency of the main body increases and its amplitude decreases. This phenomenonmatches
the behavior of the pendulum. In contrast, because the outer shell acts as the base for oscillation, a heavier mass has the opposite
effect, as shown in Fig. 5(B-III). Fig. 5(C-I, II, III) reveals that the transient response and the steady-state condition of the driven

image of Fig.�4


Fig. 5. Simulation results that show the effect of the mass of the driven ball, the main body, or the outer shell on the system's dynamics: (A) rotation of the outer
shell, θs; (B) orientation of the main body, θb; and (C) speed of the driven ball, _θd . The mass variations are executed on the driven ball (I), the main body (II), and
the outer shell (III), respectively. The dash-dotted blue, dashed red, and solid yellow lines represent the lighter mass (50% less), the nominal mass, and the heavier
mass (50% more), respectively.
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ball do not significantly change when the mass varies. The driven ball oscillates and reaches its final angular velocity within a
short amount of time. In brief, this simulation confirms that the mass of the main body has significant effect on its oscillating
behavior.

Fig. 6 plots the effect of the COM position of the main body on the system's dynamics. The COM position is characterized by the
parameter d shown in Fig. 3. Similar to the results shown in Fig. 5, variations in the position do not significantly alter the explicit
forward speed of the robot _θs, as shown in Fig. 6(A). However, they have a significant effect on the oscillating behavior of θb
because of its “pendulum behavior,” as shown in Fig. 6(B). When the parameter d increases, the oscillating frequency of the main
body also increases, and its amplitude decreases. Similarly, Fig. 6(C) reveals that the transient response and the steady-state
condition of the driven ball do not significantly change when d varies. Note that in the empirical implementation, the space for
parameter variation is limited. The input voltage is usually reserved for active control input, which is not a design parameter. The
mass of the robot's components is usually set to be composed of lighter materials since this, in general, yields a larger power
density of the system. Thus, the mass may not be a good parameter to be adjusted. As a result, the COM position of the main body
may be regarded as the only active parameter that should be considered in the design period.

4. Design realization

Though the basic structure of OmniQiu only contains three subsystems (i.e., the outer shell, the driven ball, and the main body
with two driving rollers), various issues make it challenging to apply the design to the empirical world, which are addressed in
this section.

4.1. Driving system

As mentioned in Section 2, the driven ball is driven by two orthogonally mounted rollers at its largest circle and on the
horizontal plane. With this design, the motions of the driven ball propelled by these two rollers are independent to each other,
which ease the robot's overall motion control and trajectory planning. Owing to the tight space around the roller, a spur-gear
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Fig. 6. Simulation results that show the effect of the COM position of the main body, d, on the system's dynamics: (A) rotation of the outer shell, θs; (B) orientation
of the main body, θb; and (C) speed of the driven ball, _θd . The d positions in the three subfigures are 5 (dash-dotted blue), 10 (dotted red), and 15 (solid yellow),
respectively.
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transmission (gear ratio 1:1) is utilized between the roller and the small DC motor (IG-12GM 01, Shayang Ye Co. Ltd.) with a
planetary gearbox (gear ratio 64:1, np = 64). With the assumption of pure rolling (i.e., the same tangential velocity vt at all rolling
interfaces), the forward speed can be derived as:
vt ¼ _θrrr ¼ _θdrd ¼ _θsrs; ð13Þ

wn in Fig. 2(A). In addition, the magnitude of the tangential velocity vt is also equal to the forward speed of the robot. With
as sho
a rated motor speed of 10,000 rpm, the forward velocity is calculated as 0.13 (m/s).
Fig. 7. The supporting system, pressure mechanisms, and the finished mechanism.
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Fig. 8. Mechatronic system of the robot.
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In the empirical system, since the two rollers in OmniQiu are mounted orthogonally to each other and both are in charge of the
motion in a specific direction, the explicit planar motion of the robot on the ground can be generated by simple composition of the
roller motions:
_x
_y

� �
¼

1
np
rr 0
0 1

np
rr

" #
_θm x
_θm y

" #
: ð14Þ
The symbols _θm x and _θm y are the angular velocity of the motors, which drive y-axis roller and x-axis roller, respectively. The
mapping function indicates the standard forward kinematics of the robot from inputs of the motor speeds to the output of the
robot velocity. Owing to the orthogonality, the mapping is decoupled between these two inputs/outputs.

4.2 . Friction issue

Like other wheeled-based spherical robots described in the Introduction, the robot OmniQiu's motion generation requires
adequate frictional forces acting between all rolling interfaces. In addition, pure rolling behavior is preferred for control purposes.
Because the friction force is determined by the friction coefficient and the normal force, in the empirical implementation the
design focuses on increasing both factors between the rolling surfaces. Several design features are implemented to strength the
rolling behavior between the roller and the driven ball: (i) the roller is covered with a rubber tube, which has a high friction
Fig. 9. The CAD model (A) and the images of the spherical robot OmniQiu (B and C).
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Fig. 10. Experimental setup for performance evaluation.
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coefficient to the plastic surface of the driven ball. (ii) A spring mechanism is also installed to push the roller toward the driven
ball, thus providing essential normal force and compensating for the imperfect driven ball's small shape variations. (iii) Two ball
casters are installed on top of the driven ball and on the opposite side of the rollers, respectively, thus fixing the relative
configuration of the driven ball to the main body as well as reducing the friction generated at these contact points. Three ball
casters are installed between the main body and the outer shell to adequately attach the main body to the shell. The normal force
between the driven ball and the outer shell can be expressed as
Fig. 11.
(Exp 3)
Nds ¼ Nbs þ mb þmdð Þg cos θb; ð15Þ

Nds and Nbs are the normal forces between the driven ball and the outer shell and between the main body and the outer
where
shell, respectively. In order to provide enough friction force for rolling, Nds should be sufficiently large and kept at a certain value
while the contact condition varies. As a result, a spring mechanism is mounted between the ball caster and the main body to
improve the rolling behavior between the driven ball and the outer shell. In addition to the spring forces, the weight of the main
body and the driven ball could be utilized as the source of Nds. However, this approach is not adopted here since the robot's
dynamic response will be slower with increased weight, as described in Section 3. On the other hand, a small θb can result in a
greater Nds according to the second term of Eq. (15). The illustrative diagram of the mechanisms is depicted in Fig. 7.
4.3. Mechatronic system

Fig. 8 shows the mechatronic system of the OmniQiu. A RF-based transmitter/receiver pair (T2ER, Futaba) is utilized for the
communication between the OmniQiu and the remote operator. The control signal sent from the operator can be well recognized
by the receiver, and it is sent to an electric speed control (ESC, TAMIYA, TEU-101BK) that drives the motor with a pulse-
width-modulation (PWM) method. Thus, the motor's speed can vary. The robot is operated on 9 V according to the specifications
of the receiver, motor drivers, and the motors. Six nickel–metal hydride (NiMH) AA batteries are used as power source. Further,
through the gear pair and the rolling mechanism, the robot can be driven according to remote commands. The robot's planar
motion can be adequately generated through the composition of the rolling motions along with two rolling axes based on
Eq. (14).
The trajectories of the robot's geometrical center while it is driven by the x-axis roller (Exp 1), the y-axis roller (Exp 2), and two rollers simultaneously
.
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Table 2
Root mean squared error of the robot in the experiments.

Lateral displacement (mm) Yaw orientation (deg)

Mean (std) Mean (std)

Exp 1 26 (7.47) 5 (0.96)
Exp 2 56 (35.92) 10 (4.94)
Exp 3 41 (1.44) 13 (3.94)
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5. Performance evaluation

Table 1 lists the overall specifications of the spherical robot OmniQiu. Fig. 9(A) depicts the complete CAD model of the system
and Fig. 9(B) shows the picture of the empirical system. The outer shell's material was obtained from a company that
manufactures globes. The structure of the main body was constructed with acrylic sheets owing to their easy manufacturability by
a laser cutter. Because the configuration of the main body was not symmetrical with respect to the vertical axis owing to the
installation of various components, the heavy-weight components such as batteries were carefully arranged for two purposes:
(i) to balance the weight distribution of the main body so its COM could be aligned with the central line of the whole system; and
(ii) to lower the COM of the main body, thus reducing its tilt phenomenon and improving the robot's dynamic response, as
described in Section 3.

In order to quantitatively evaluate the designed system's performance, several experiments were executed where the robot
ran within the ground truth measurement system (GTMS), as shown in Fig. 10 [23]. The GTMS has two high-speed cameras
(A504k, Basler) installed on the top right and left sides of the experimental area, which can reconstruct the spatial coordinates of
the bright markers using two synchronized images captured by the cameras, running at 100 Hz. Three laser pointers were
mounted on top of the main body, and the emitted red lights were projected onto the semi-transparent outer shell to form three
red dots. The spatial coordinates of the three dots were reconstructed by the GTMS, and then the COM trajectories and the
orientations of the main body versus timewere computed from the red dots' coordinates based on the geometrical relations of the
red dots to the COM.

The robot was operated to run under the GTMS using three different driving methods: only the x-axis roller actuated (Exp 1),
only the y-axis roller actuated (Exp 2), and both rollers simultaneously actuated (Exp 3), each with three runs. The robot started
from a resting state and moved forward about 1 m, which is the maximum range of motion the GTMS can record. In addition,
another experiment was carried out to evaluate the robot's natural frequency: without any voltage input, the robot was disturbed
from its equilibrium (i.e., with the initial condition θb ≠ 0), and the robot wobbled like a wobbly man. Fig. 11 shows the
trajectories of the robot's geometrical center (i.e., center of the outer shell). Ideally, the robot should move along in a straight line
and the main body should keep its orientation unchanged, but empirically, the robot should have motion deviations owing to the
various imperfect settings in which real robots operate. Table 2 lists the root mean squared (RMS) tracking error in the lateral
direction and the RMS error in the yaw orientation. Along with a 1-meter path, the lateral error is no larger than 4.1 cm. The yaw
state is not controllable, as mentioned in Section 2, and on average, the main body has no more than a 13-degree deviation. Note
that in ordinary operation, the direction of the robot's explicit motion can be adjusted by setting the correct ratio of input voltages
for the robot. In the test reported above, no adjustments to the roller motion were executed in the middle, to act as the baseline
and performance characterization. The error reported in Table 2 mainly results from two facts. First, the COM of OmniQiu is not
perfectly located at the center. When the robot started moving, gravity created unwanted moments to the robot, so the robot's
forward motion was deviated toward another direction. The other issue is friction. The contacts between all surfaces (i.e., the
roller, the driven ball, the outer shell, and the ground) are basically point contacts, and it may not be sufficient to provide enough
friction to reject the torque disturbance about the vertical axis, so the main body may exhibit unwanted yaw motion.

Fig. 12 shows the oscillating frequency of the main body θb when the robot was operated according to the different input
methods described in the previous paragraph. The figure reveals that oscillations existed in all experiments and the frequency of
θb is quite uniform, which is consistent with the simulation results reported in Section 3. We observed that in Exps 1–3 the driven
ball reached its steady-state angular velocity, _θd, within a short time period. Because the rotation of the driven ball, the outer shell,
and the main body are coupled, as shown in Eq. (3), the oscillation of θb would result in the oscillation of θs when the robot was in
Fig. 12. Oscillating frequency of the main body when the robot was operated at different forward speeds.
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Fig. 13. The snapshots of the robot moving along a triangle route.
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motion. Fig. 12 also reveals that the averaged forward velocities in Exp 1 (x-axis roller actuated) and Exp 2 (y-axis roller actuated)
are not the same, but instead they are 25% different (i.e., averaged 97 mm/s in Exp 1 and 126 mm/s in Exp 2), resulting from the
inconsistent empirical settings between the two axes, such as the friction condition, the gearbox efficiency, the contact surface
characteristics, etc. It is worth pointing out that in Exp 3, where the robot was simultaneously driven by both rollers, the average
forward velocity (235 mm/s) was faster than the resultant velocity formed by Exp 1 and Exp 2 where the robot was driven by one
roller. This indicates that the overall amount of energy consumption for wearing out or other loss in Exp 3 is less than the
summation of that in Exp 1 and Exp 2. Thus, when both rollers were actuated, the operating points of the motors shifted to new
locations with higher speeds and lower torques. As a result, the forward velocity in Exp 3 was much larger than that of Exp 1 and
Exp 2 multiplied by the squared root of 2.

In order to test the ability to perform omni-directional locomotion, the triangle route test was carried out. In the triangle route
test, the robot was operated to follow an isosceles triangle with a hypotenuse of 3.8 m as shown in Fig. 13, where the size of the tile
on the ground was 20 cm × 20 cm. The images of Fig. 13 are snapshots of a video that recorded the overall robot locomotion from
the ceiling by a commercial digital camcorder (HDR-XR350, SONY). The time difference between two consecutive images is 3 s, and
the overall motion takes 72 s. As a result, the empirical turning trajectory appeared in an arc rather than a sharp angle owing to the
robot's existing momentum in the original direction. In this case, the overall momentum of the robot was altered gradually by the
motor torques, and the robot motion during the turning transition was the composition of momentum decay along with the original
direction and the momentum increase along with the new direction. Therefore, owing to Newton dynamics, the empirical trajectory
has a larger discrepancy from the original naive trajectory with sharp turns. The phenomenon is consistent with general impressions
regarding the effect of inertia. Lighter systems can have faster responses. In summary, the overall result reveals that the robot can be
operated to follow the desired trajectory quite well, and omnidirectional motion is indeed achievable.

A brief discussion of mobility of the robot on the uneven terrain is listed here. Because the power of the motors used in the
current implementation is very small (3 W), we found that the robot can only climb a slope with a very small incline. In addition,
if it encounters a small obstacle, we have found through empirical testing that the spherical robot is almost always detoured and
does not cross over the obstacle. This behavior is expected and can be roughly explained by physical phenomenon (i.e., a change
of boundary condition). Normally, the spherical robot has contact with the ground with only one point; when the robot meets an
obstacle, another contact point is then established. When this happens, the robot's locomotion is somewhere between
(1) rotating with respect to the direction formed by two contact points and (2) opting for the path with the least increase of
potential energy. The quantitative trajectory of the robot would be determined by its initial body state as well as the relative
position of the added contact point to the robot. If there is a step obstacle in its way, in general, the spherical robot will
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demonstrate a similar crossing behavior to that of wheeled robots because the cross-section model of both systems is the same. In
general, when comparing the robots to other shapes, the spherical robot may be more easily detoured, but it rarely gets stuck
because of its unique outer shape. As long as the robot has internal navigation capability, the detoured path can be recovered.

6. Conclusion

We report on the design and implementation of the novel omnidirectional spherical robot OmniQiu. For this robot, a smaller
ball is placed inside the spherical shell and driven by two orthogonally-mounted and independently-operated rollers. The ball can
be rolled in any direction due to the linear composition of the rolling forces from the rollers, thus moving the whole system. With
two actuators, the robot can perform 2 DOFs of omnidirectional locomotion without any singularity configuration. A simplified
planar model is constructed using the Lagrangian method to investigate the dynamics of the robot. Simulation results reveal that
the forward velocity of the robot is roughly proportional to the input voltage of the motors. Owing to the outer shell's circular
profile and rolling motion of the driven ball inside the outer shell, when the input voltage is applied to the robot for locomotion,
the robot's main body oscillates like a pendulum. The single input of voltage affects both the rotational motion of the main body
and translational motion of the outer shell (or the robot). The yaw rotation of the main body is not controllable, but this is a minor
issue since this does not affect the robot's explicit translational locomotion behavior if the motion of the two rollers is adjusted.
The simulation results also reveal that the components inside the shell should be placed as low as possible to increase the
system's dynamic response, which was taken into consideration when designing the robot. Since the rolling behavior of the robot
requires frictional force, several design considerations (such as spring mechanisms) are reported to solve this issue. The robot is
built, and several experiments are conducted to evaluate its performance. The dynamic characteristics of the empirical robot
(such as the main body's oscillation) match the simulation results. The lateral deviation of the robot when it is operated in
forward motion is no larger than 0.041 m in a 1-meter motion course. The experimental evaluation confirms that the design
concept is feasible and realistic, and the robot can be operated to follow a straight line or move along a triangular route.
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